Online Monitoring

D.A. Petyt Online Workshop - Jan '01

- Purpose of this talk:
 - general overview of monitoring goals
 - description of the monitoring framework
 - list of monitored quantities variables displayed on-screen
 - errors/actions, logging of output
 - reconstruction needs
- Tuesday/Wednesday session:
 - technical issues, unresolved issues, discussion

Goals of Monitoring

• Online monitoring should:

- check the performance of the detector elements and track changes on both short and long timescales
- check the quality of the data

• This is achieved by:

- constructing channel maps from singles/cosmics to detect hot/dead channels
- performing simple reconstruction of beam events and cosmics to obtain diagnostic checks of the data (and beam)
- The monitoring system should be able to detect and log failures/anomalies on a timescale of << 1 hour.
 - A summary containing all relevant data should be produced at the end of each run

Monitoring - Near-Online

- The raw data is written by the DAQ in the form of root files. These contain:
 - beam events, cosmics, singles summaries, flasher summaries
- The online monitoring PC receives this data from the dispatcher on a client/server basis
- The various data types are processed by modules within the monitoring system to produce the monitored quantities
 - this uses reconstruction code developed for the offline system
 - may require constants from the database
- The system runs on its own PC at the detector sites, from which quantities are displayed and logged

Framework - CDF RunII

- The online monitoring framework is based on the CDF Run II model
- CDF have agreed to supply us with their monitoring code (contact: Kaori Maeshima at FNAL)
- The system is ROOT-based and possesses the features that we require:
 - modular, extensible framework
 - histogram output display program
 - local/remote access methods
 - + error logging
- We currently have 18 month old test code. New code (developed during 2000 CDF commissioning run is being made available
 - need this a.s.a.p. to begin prototyping

Overview of the framework

 Splitting of Producer, Presenter, Display Server:

• Producer:

 modules that analyse raw data, create histograms, perform statistical analyses

Presenter

 the display program - realtime updates of monitored quantities

Display Server

monitor results transmitted to networked (local/remote) machines

Example of monitoring GUI

Open new GUI/canvases

Select input stream

Click on "Start"

displays List Tree of Modules, sub-processes and variables

Drawing items:

RIGHT CLICK on object in List Tree.

Canvas automatically subdivides if object contains more than one histogram

Deleting items:

LEFT CLICK on object in List Tree and select Delete from List Tree menu

Controls/suspends automatic update of histograms

"ZERO": resets selected

histogram

"RESTORE": undo of

zero command

"CONTENT": examine

bin contents

Example of sample output

Local/Remote Access

- Locally via root sockets
 - replaces use of memory map file in old framework
 - can allow display program to run off a separate
 machine from Producer removes histogram plotting
 CPU load from monitoring PC (can be a big overhead)
- Remotely -
 - via web access ROOT-aware Apache server
 - need to write out ROOT file periodically during run
 - via sockets
 - rootd?

Monitored Quantities

• Several sources:

Data source	NEAR	FAR	CALDET
Beam	<50 Hz	0.1 mHz	80 Hz
Singles	0.6 MHz	1.4 MHz	90 kHz
Cosmics	11 Hz	1 Hz	11 Hz

- Usefulness of each source depends on rate and number of channels in each detector:
 - 22 K channels(far), 11K channels(near), 1440 channels(caldet)
 - cannot monitor beam events in far detector
 - cosmics cannot be used to construct real-time hit-maps in far detector

1) Singles rates/hit maps

- The performance of detector elements in each of the three detectors will be principally monitored using singles data
 - rates of cosmic muons are too low, especially in far detector
 - possible longer-term cosmic detector monitoring in near/CalDet
- Trigger farm writes out singles data summaries
 - singles "hits" do not go beyond farm processors
- From these summaries we want to monitor:
 - Rates: overall detector rate
 per crate rate

 Means, rms
 - Maps:
 - per channel maps or per pmt maps
 depends on #channels Farm rate issue – is per pmt sufficient?
 - Anomalies
 - list of dead/hot channels Threshold set in Farm

Toy singles rate display

Simple mock up

- real-time updates of hit map and projections
- real-time rate monitor with running mean
- statistics summary canvas

Issues identified:

- how often to update (overhead)
- what is the best way of displaying information from large numbers of channels

2) Cosmics/Beam data

- A fraction of the beam data and/or cosmic events will be reconstructed and analysed to monitor the data quality
 - precise fraction to be determined (depends on performance of reconstruction algorithms)
 - current goal is to reconstruct 1000 events/run to obtain sensible statistics on distributions

Far detector

- use Paul's cosmics finder or equivalent
- too few beam events to do anything other than monitor rate

Calibration detector:

reconstruct beam events and cosmics

• Near detector:

analyse time frames - most testing reconstruction challenge

Far detector events

Reconstruction of ~1000 cosmic muons

- Number of identified cosmics (efficiency)
- Number of hits
- Mean corrected pulse height
- Track length
- Number of planes crossed
- Track direction cosines
- Track residuals
- Track quality χ^2 ?
- Plane hit map

Calibration detector events

c

- Total number of hits
- Summed (corrected) pulse height
- Event flavour: e,μ,h
- Event length
- Event width
- # of track segments
- Principal track: track length, track angle
- # of clusters
- Principal cluster
 - summed pulse height
 - cluster z position
 - cluster angle
- spatial distribution of clusters
- contained/uncontained:
 - 0: contained, 1: exit back,
 - 2: exit side, 3: exit side and back
- Hits per plane

Near detector events time frames

- Total number of hits
 - full detector, region by region,
 cumulative plane map
- Number of clusters (event candidates)
- Vertex distribution of clusters
- Time distribution of clusters
- # of overlapped clusters
- # of tracks per cluster
- cluster lengths
- cluster RMS widths
- cluster flavour tags
- # of track segments/time frame
- # of hits (+p.h.) in primary cluster
- # of hits (+p.h.) in all other clusters
- contained/uncontained flag

Offline reconstruction code required

- Far detector:
 - cosmic muon finder (Paul Miyagawa code)
 - de-muliplexing code (Brian Rebel code)
- Calibration detector:

Track finding
 Hough, Kalman filter

- Track fitting Kalman, ...

Clustering
 fast clustering algorithm

cosmic muon codePaul's code

• Near detector (as calibration detector) +

event splittingFast splitter (TDC cuts+...)

vertex finding

• General offline code:

raw data format
 Robert's classes/code

database access
 Nick's code

Display/Logging/Interfaces

- Operator display most pertinent information (flexible):
 - Singles window:
 - total singles rates/ per crate rates
 - total rate as a function of time
 - PMT/channel maps, projections
 - Cosmics/Beam data windows:
 - user-defined views from module List Tree
 - Status window
 - Run number, time, overall rates
 - Message window
 - general messages, error reports
 - GUI window
 - Windows from external sources
 - flasher data

Logging contd.

- Root file (with all histograms) should be saved at end of run. A digest of this information will be generated and saved in a summary file, including:
 - means/rms of important distributions refer to variable list
 - overall rates
 - append error log (see below)
- Error logging what can go wrong?
 - dead/hot channels auto-generated list, should go in database
 - Dead regions of detector log and raise a flag !!!!
 - Anomalously high background rates raise a flag should be spotted in DAQ?
 - No reconstructed beam events
 - Anomalous data distributions
- Error logging model:
 - record (on screen and in error log→database) no further action?
 - is this enough? need to ensure all bases are covered

Sequence of events

Start of run

Get run number

Create root file

Initialise histograms

Connect to dispatcher

Accept socket connections

Request data from dispatcher

Mid-run

Process data, fill histograms, update statistics

Check for errors: display and write to error log

Periodically write root file

End of run

Disconnect from dispatcher
Calculate final run statistics
Create run summary and write to file
Close root file

Check dead channels: write to database if necessary

Next steps

- Obtain new framework and begin tests
- Move over to new Raw Data format
- Integration tests:
 - root file->Dispatcher>Monitoring
- Finalise list of monitored quantites and preferred displays
- Work with reconstruction group to develop/adapt algorithms for monitoring use

Discussion Issues: Tue/Wed

Monitored quantities is current list complete?

Rate issues processing power/DAQ rates

• Reconstruction code who/what/when(/how)?

- requirements

interfaces

issues

Logging what, stored where?

Fault handling who should know/when?

Local/Remote access methods/security

Database access
 what is needed/when?

• Correlation with beam data?